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Abstract

We present a generalization of a class of sequential search problems with ordi-
nal ranks (“secretary” problems) in which applicants are characterized by multiple
attributes that are evaluated independently. We then present a procedure for nu-
merically computing the optimal search policy and test it in two experiments with
incentive-compatible payoffs. With payoffs dependent on the absolute ranks of the
attributes, we test the optimal search model with both symmetric (Experiment 1)
and asymmetric (Experiment 2) search problems. In both experiments we find that,
relative to the optimal search policy, subjects stop the search too early. Our re-
sults show that this bias is largely driven by a propensity to stop prematurely on
applicants of intermediate (relative) quality.
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1 Introduction

Consider the problem of searching for an employee to fill an open position
that requires both strong technical skills and good interpersonal skills. Ide-
ally, one would attempt to employ an applicant who is outstanding on both;
most likely, however, one will have to make trade-off decisions, perhaps by
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accepting an applicant who has remarkable technical skills but only average
interpersonal skills. Decisions of this sort have received considerable attention
in static contexts in which the decision maker (DM) must choose among a set
of options presented simultaneously (see Payne et al., 1993, for an thorough
review). Here, we are interested in problems in which options are observed
sequentially, and decisions to accept or reject an option must be made in the
absence of full information about the multi-dimensional distribution of the
attributes. Returning to the hiring example, when one decides to terminate
the search by hiring an applicant, one then forgoes the opportunity of hiring
another applicant, potentially better, who has yet to be interviewed. Likewise,
in times of low unemployment, not hiring a seemingly excellent applicant on
the spot may mean that one forgoes the opportunity to hire that applicant. As
a result, one may be forced into a position of hiring a less qualified applicant
later on.

Previous research on sequential search problems has presupposed that op-
tions are represented by a single (scalar) value of quality or goodness. These
problems fall into three general classes. Full information problems present
DMs with options that are random variables drawn i.i.d. from a distribution
assumed to be known to the DM before the search commences. In Partial in-
formation problems the assumption that the DM knows the parameters of the
distribution from which the options are sampled is relaxed by, for example,
assuming that the DM knows that the distribution is normal, but that she
must learn its mean and variance during the search process. No information
problems suppose that the distribution from which the options are taken is
unknown to the DM and cannot be learned during the search process. The
most famous example of a no information problem is the “secretary problem”
(e.g., Ferguson, 1989; Freeman, 1983; Gilbert and Mosteller, 1966; Samuels,
1991). In it, the DM is only informed about the relative rank of each encoun-
tered option, specifically, whether each option is the best observed up to that
point.

Experimental work on sequential search problems has primarily focused on
the full-information case (e.g., Cox and Oaxaca, 1989; Hey, 1981, 1982, 1987;
Kogut, 1990; Rapoport, 1969; Rapoport and Tversky, 1970; Sonnemans, 1998,
2000). Bearden et al. (2004) have criticized the full information case as being
too restrictive. Some have examined the partial information case (e.g., Kahan
et al., 1967; Shapira, 1981). More recently, the no information case has received
growing attention (e.g., Bearden et al., 2004; Corbin, et al., 1975; Seale and
Rapoport, 1997, 2000; Zwick et al., 2003). In all of these cases, the options
are represented by a scalar value (either a ratio measure of quality or rank
information). Often, however, as in the job search example, decision makers
must search through options composed of multiple attributes. In the current
paper, we describe a new class of sequential search problems that generalizes
the secretary problem to options composed of multiple attributes, present a
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method for computing the optimal policies, and describe results from two
experiments in which we test the descriptive power of the optimal search
model.

2 Secretary Problems

In the Classical Secretary Problem (CSP), a DM sequentially observes appli-
cants randomly drawn from a pool of n applicants for a single position. When
she observes the jth applicant in the sequence, she learns only the quality
of that applicant with respect to those previously seen. Her objective is to
select the one who is best overall—i.e., relative to all applicants, those seen
and those not-yet-seen. The CSP can be formally stated as follows:

1. There is a fixed and known number n of applicants competing for a single
position who can be ranked in terms of their quality with no ties.

2. The applicants are interviewed (observed) sequentially in a random order
(with all n! orderings occurring with equal probability).

3. For each applicant j, the DM can only ascertain the relative rank of the
applicant, that is, how valuable or attractive the applicant is relative to the
j − 1 previously viewed applicants.

4. Once rejected, an applicant cannot be later recalled. If reached, the nth
applicant must be accepted.

5. The DM earns a payoff of 1 for selecting the applicant with absolute rank
1 (i.e., the overall best applicant in the population of n applicants) and 0,
otherwise.

The optimal (expected payoff maximizing) search policy is to interview and
reject the first t − 1 applicants and then to accept the first one thereafter
with a relative rank of 1 (Gilbert and Mosteller, 1966). The cutoff t converges
to n

e
and the optimal policy selects the best applicant with probability 1

e
as

n →∞. Both t and the selection probability converge from above.

Seale and Rapoport (1997) had subjects play a large number of random in-
stances of the CSP in two different experimental conditions: n = 40 and
n = 80. In both, they found that subjects tended to terminate their search
too early relative to the dictates of the optimal policy. The authors proposed
several different decision heuristics that DMs might have used in the CSP,
and competitively tested them using their experimental data. They concluded
that a threshold rule of the same form as the optimal policy best accounted for
their data. The DMs’ thresholds were simply shifted toward early applicants;
more precisely, the thresholds tended to be positioned below the optimal (n

e
th)

position. Seale and Rapoport suggested that the bias to stop too early might
result from endogenous search costs. Since search is costly in terms of time
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(Stigler, 1961), the optimal policy to which the subjects’ behavior is compared
may be inappropriate. One cannot rule out the possibility that the search poli-
cies used by the subjects are, in fact, net payoff maximizing (and therefore
optimal) if endogenous search costs are factored in.

In a subsequent paper, Seale and Rapoport (2000), relaxed assumption 1 of
the CSP; at the beginning of each trial, subjects in their experiment knew
the distribution from which n was sampled but not the actual value of n for
the problem instance they played. They also concluded that the DMs tended
to terminate their search too soon. Other variants of the CSP have been
experimentally studied. For example, Zwick et al. (2003) relaxed assumption
4 by allowing DMs to recall previously interview applicants, with the success
of recall being a probabilistic function of the time of recall and the position of
the to-be-recalled applicant. When search was costless, they found that DMs
tended to search insufficiently; however, when the experimenters imposed a
fixed search cost for each applicant, the pattern was reversed: the DMs tended
to search for too long.

Bearden et al. (2004) presented and tested a generalization of the CSP in which
the DM earns payoffs that are nondecreasing in the quality of the selected
applicant. They argued that this payoff structure better captures features of
many real-world search problems than the nothing-but-the-best (0,1) payoff
scheme of the CSP. In hiring an administrative assistant, for example, it is
tautological to say that one is better off hiring a better applicant over a poorer
applicant. Hence, the payoff scheme of the CSP misses an important feature of
many actual search problems. To capture this feature, Bearden et al. proposed
what they dubbed the Generalized Secretary Problem (GSP) by replacing
assumption 5 in the CSP with:

5’. The DM earns a payoff of π(a) for selecting an applicant with absolute
rank a where π(1) ≥ . . . ≥ π(n).

This formulation captures a number of interesting payoff schemes. Suppose,
for example, that one’s payoff increases linearly in the quality of the selected
applicant. One can represent this in the GSP by setting π(a) = α + β(n− a),
when β > 0. An infinite number of alternative schemes can be captured as
well. Further, note that the CSP is a special case of the GSP in which π(1) = 1
and π(a) = 0 for all a > 1.

The optimal search policy for problems with the payoff structure stated in
assumption 5’ has the same threshold form as that of the CSP (Mucci, 1973).
The DM should interview and reject the first t1 − 1 applicants, then between
applicant t1 and applicant t2−1 she should only accept applicants with relative
rank 1; between applicant t2 and applicant t3−1 she should accept applicants
with relative ranks 1 or 2; and so on. Under this policy, the DM’s standards
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relax as she plunges deeper into the applicant pool (and closer to the last
applicant), and she is more apt to select lower quality applicants. Bearden and
Murphy (2004) presented a dynamic programming procedure for computing
optimal policies for the GSP.

In two experimental studies of the GSP, Bearden et al. (2004) concluded that,
as in the CSP, DMs tend to terminate their search too early relative to the
dictates of the optimal policy. They offered an alternative to the endogenous
search cost explanation proposed by Seale and Rapoport (1997). Using scoring
rules, Bearden et al. had DMs estimate the probability of obtaining various
payoffs for selecting applicants of different relative ranks in different applicant
positions. They then argued that the bias to terminate search too early in
the GSP results from DMs overestimating the payoffs that would result from
doing so. In fact, their subjects’ estimates of obtaining positive payoffs were
subadditive: For many values of the applicant positions j, the subjects’ mean
probability estimates for obtaining positive payoffs for stopping on j summed
to more than 1. They explained this finding using Tversky and Koehler’s
(1994) support theory, which is a descriptive theory of subjective probability.
In short, they suggested that when evaluating early applicants the DMs do
not give sufficient weight to the fact that a large number of applicants remain
to be interviewed.

The current paper builds on the work of Bearden et al. (2004) and Bearden and
Murphy (2004) by proposing a multi-attribute (or multi-dimensional) gener-
alization of the GSP, presenting a method for computing its optimal policies,
and testing it in two experiments with incentive-compatible payoffs. Since
real-world search problems often involve trade-offs among attributes, we be-
lieve that this extension moves laboratory search problems, which provide us
with an exceptional degree of control, closer to the types of problems faced by
DMs in the wild.

3 A Multi-Attribute Secretary Problem

3.1 Statement of the Problem

Suppose that we have a set of n applicants who differ from one another along k
different dimensions or attributes. In the domain of job search, the attributes
might represent education, work experience, degree of technical proficiency,
interpersonal skills, etc. The applicants are interviewed in a random order,
with all n! orderings obtaining with equal probability. For each attribute i,
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the applicants can be ranked from best to worst with no ties. 2

The absolute rank of the jth applicant on the ith attribute, denoted by aj
i , is

simply the number of applicants in the applicant pool, including j, whose ith
attribute is at least as good as the jth applicant’s. Hence, an absolute rank
of 1 means that there is no other applicant in the pool with an attribute as
good; an absolute rank of 2 means that there is exactly one other applicant
with a better score on that attribute; etc. The jth applicant’s absolute ranks
can, therefore, be represented by a vector aj = (aj

1, . . . , a
j
k).

The relative rank of the jth applicant on the ith attribute, denoted by rj
i , is

the number of applicants from 1 to j whose ith attribute is at least as good
as the jth’s. The first applicant (j = 1) will always have a relative rank of 1
on all k attributes; applicant j = 2 will have a relative rank of either 1 or 2
on each attribute; and so on. When the DM observes the jth applicant, she
observes the relative ranks of the applicant along each of the k attributes. She
observes rj = (rj

1, . . . , r
j
k) and must make her selection decision on the basis

of this information. As in the GSP, once she passes (rejects) an applicant she
cannot return to that applicant—there is no recall.

Although she only observes relative ranks rj, the DM’s payoff for selecting
the jth applicant, denoted Πj, is based on the applicant’s absolute ranks aj;
specifically,

Πj =
k∑

i=1

πi

(
aj

i

)
, (1)

where πi is a function that maps absolute ranks on the ith attribute into real
payoffs. We constrain πi(x) ≥ πi(y) for all i and all x ≤ y; that is, ceteris
paribus, one never earns less for selecting an applicant with a better attribute.
An optimal policy for this problem, which we dub the Multi-attribute Secretary
Problem (MASP), is one that maximizes the expected value of the selected
applicant.

A few related problems have appeared in the literature. Gnedin (1981) pre-
sented the solution to a multi-attribute CSP in which the attributes are in-
dependent and the DM’s objective is to select an applicant who is best on
at least one attribute. Ferguson (1992) generalized the problem presented by
Gnedin by allowing dependencies between the attributes, and showed that the

2 The no tie assumption considerably simplifies matters with little loss of generality,
assuming that the attribute values fall on a continuum and that there will be at least
infinitesimal differences in the attributes of any two applicants. Of course, this rules
out nominal valued attributes such as sex; but most attributes can be represented
on a continuum.
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optimal policy has the same threshold form as the standard single attribute
CSP. Samuels and Chotlos (1987) extended the rank minimization problem
of Chow et al. (1964). They sought an optimal policy for minimizing the sum
of two ranks for independent attributes. The rank sum minimization problem
they studied is equivalent to the MASP in which π1(a) = π2(a) = n − a.
The MASP is considerably more general than these previous problems, as it
only constrains the payoff functions to be nondecreasing in the quality of the
selected applicant’s attributes.

Next, we describe a procedure for computing optimal policies for the MASP.

3.2 A Procedure for Computing Optimal Policies

The probability that the ith attribute of the jth applicant whose relative rank
on that attribute is r has an absolute (overall) rank of a is given by (Lindley,
1961):

Pr (A = a|R = r) =

(
a−1
r−1

)(
n−a
j−r

)
(

n
j

) , (2)

where r ≤ a ≤ r + (n − j); otherwise, Pr(A = a|R = r) = 0. We assume
that the k attributes are pairwise independent; that is, Pr(ai = a ∧ ai′ =
a′) = Pr(ai = a)Pr(ai′ = a′) for any pair of attributes i and i′. Therefore, the
expected payoff for selecting the jth applicant is:

E
(
Πj|rj

)
=

k∑

i=1

n∑

a=rj
i

Pr
(
A = a|R = rj

i

)
πi(a). (3)

Again, we desire a policy that maximizes expected payoff in the MASP. The
expected payoff for following such a policy is denoted by V ∗. Following con-
vention, the expected payoff for following the optimal policy from stage j to
n is denoted V j∗. Hence, V ∗ = V 1∗.

At each stage j of the decision problem, the DM must decide either to accept or
reject an applicant knowing only the applicant’s relative ranks rj. We represent
a decision policy for each stage j as a set of acceptable rj for that stage
Rj = {rj}. Under the stage policy Rj, the DM stops on an applicant with
relative ranks rj if and only if rj ∈ Rj. The global policy is just the collection of
stage policies R = (R1, . . . ,Rn). By Bellman’s (1957) Principle of Optimality,
for an optimal (global) policy R∗, each sub-policy (Rj, . . . ,Rn) from stage j
to n must also be optimal. Given this property, we can find the optimal policy
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using straightforward dynamic programming methods by working backward
from stage n to stage 1. A procedure for constructing optimal stage policies
Rj∗ follows from Proposition 1, which we present below. To simply exposition,
we first make the following assumption:

Assumption 1 When the expected value of stopping at stage j equals the
expected value of continuing to stage j + 1 and behaving optimally thereafter,
the optimal DM stops at j.

Proposition 1 r ∈ Rj∗ ⇔ E (Πj|r) ≥ V j+1∗.

Proof Suppose that E (Πj|r) > V j+1∗ for some r /∈ Rj∗. Therefore, rejecting
this r entails moving to j + 1 where the expected payoff, V j+1∗, is strictly less
than stopping on j. Hence, by the Principle of Optimality, this r must be in
Rj∗. Now, suppose that E (Πj|r) < V j+1∗ for some r ∈ Rj∗. Then, the DM will
stop on this r when continuing the search has a higher expected value, V j+1∗.
Thus, by the Principle of Optimality, Rj∗ cannot be optimal if it contains this
r. By Assumption 1, when E (Πj|r) = V j+1∗, this r ∈ Rj∗. Therefore, r ∈ Rj∗

if and only if E (Πj|r) ≥ V j+1∗. 2

Proposition 2 r ∈ Rj∗ ⇒ r ∈ Rj+1∗.

We omit the proof of Proposition 2 as it follows directly from Corollary 2.1b
in Mucci (1973). Proposition 2 tells us that if it is optimal to stop at stage
j when one observes r, then it is optimal to stop when one observes r in the
next stage; by induction, then, it is optimal to stop given r in all subsequent
stages. This property will be useful below because it allows us to represent
the optimal policies rather compactly.

Since the DM must accept the nth applicant, if reached,

V n∗ = (n)−1
k∑

i=1

n∑

a=rj
i

πi(a). (4)

The expected payoff for the last applicant under the optimal policy (or any
other permissible policy) is simply the payoff one expects for selecting an
applicant at random. The expected payoff for following the optimal stage
j < n policy and then following the optimal policy thereafter is expressed by
the functional equation

V j∗ = Q
(
Rj∗) E

(
Πj|Rj∗) +

[
1−Q

(
Rj∗)]

V j+1∗, (5)
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where E (Πj|Rj∗) = |Rj∗|−1 ∑
r∈Rj∗ E(Πj|r) is the expected payoff for stopping

at stage j under the optimal stage j policy, and Q (Rj∗) = |Rj∗|/kj is the
probability of stopping on j under the optimal stage j policy. Given V n∗,
working backward from stage n − 1 to stage 1 by alternating between the
application of Proposition 1 and the computation of Eq. 5, the optimal global
policy R∗ is easily constructed.

Denoting the applicant position at which the search is terminated by m, the
probability that the DM stops on the (j < n)th applicant under the optimal
policy is:

Pr (m = j) =




j−1∏

h=0

[
1−Q

(
Rh∗)]


 Q

(
Rj∗) , (6)

where Q (R0∗) = 0. The expected stopping position is, then:

E (m) = 1 +
n−1∑

j=1




j∏

h=1

[
1−Q

(
Rh∗)]


 . (7)

Eq. 7 will be useful below when we discuss the behavior of actual DMs in the
MASP.

3.3 An Example of a MASP and the Application of Its Optimal Policy

An example of an instance of the MASP for a case in which n = 6 and k = 2
is shown in Table 1. The payoffs for each a for each attribute i are shown
in the top panel. The center panel displays the absolute and relative ranks
of each applicant. Applicant 1 has absolute ranks of 2 and 5 on attributes
1 and 2, respectively; her relative ranks are 1 for both attributes. Applicant
2 has absolute ranks of 4 and 2, and therefore relative ranks of 2 and 1, for
attributes 1 and 2, respectively, etc. The bottom panel displays the value of
the optimal policy for each applicant position (stage) and the expected payoffs
for selecting each applicant j. Under the optimal policy, the expected earnings
are V 1∗ = 7.82 in this example.

Let us look at how the optimal policy would be applied here. For appli-
cant 1, the DM should stop only if the expected payoff for selecting the
first applicant meets or exceeds 7.82. However, since the expected payoff
for the first applicant will always be 5.83 because her relative ranks will
always be 1, the DM will never stop on the first applicant. For applicant
2, the expected payoff for selection must not be less than 7.67 for the DM
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Table 1
An example of a MASP with n = 6 and k = 2. See text for explanation.

Payoff Values

a 1 2 3 4 5 6

π1(a) 6 5 4 3 2 1

π2(a) 5 4 3 2 0 0

Example Applicant Sequence

Applicant (j) 1 2 3 4 5 6

aj
1 2 4 3 6 5 1

aj
2 5 2 1 3 6 4

rj
1 1 2 2 4 4 1

rj
2 1 1 1 3 5 4

Optimal Policy and Payoffs

Applicant (j) 1 2 3 4 5 6

V j+1∗ 7.82 7.67 7.37 6.83 5.83 —

E
(
Πj |rj

)
5.83 5.73 7.55 2.93 1.83 8.00

Πj 5.00 7.00 9.00 4.00 2.00 8.00

to make a selection; hence, the DM will stop only when the second appli-
cant has relative ranks of 1 on both attributes (because E(Π2|(1, 1)2) = 8.26;
E(Π2|(1, 2)2) = 5.93; E(Π2|(2, 1)2) = 5.73; and E(Π2|(2, 2)2) = 3.40). In this
example, the optimal policy dictates that the DM stop on applicant 3 because
E(Π3|(3, 1)3) = 7.55 > V 4∗ = 7.37. Since a3 = (3, 1), the DM earns Π3 = 9.00
for her selection. Fortunately for her, in this instance she could not have earned
more by selecting any other applicant.

Next we describe two experiments in which we tested the predictions of the
optimal search policy with actual DMs. In the first, the attributes are equally
weighted, that is, π1(a) = π2(a) for all a. The second experiment examines
a case in which the attributes are unequally weighted. After describing the
experiments and their results, we describe some implications and discuss future
directions for this line of research.
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4 Experiment 1: Equally Weighted Attributes

4.1 Method

4.1.1 Subjects

Thirty subjects participated individually in the experiment. All of them were
University of Arizona students recruited by advertisements asking for volun-
teers to participate in a decision making experiment with payoffs contingent on
performance. The mean payoff per session, that typically lasted 40-60 minutes,
was $21 (minimum $5, maximum $50). In addition to the monetary payoff,
subjects received class credit for their participation if they requested it.

4.1.2 Procedure

The instructions (hard copy) explained the MASP in detail, placing special
emphasis on the computation of the relative ranks with the presentation of
a new applicant. In the instructions, the subjects read through an example
with n = 6 applicants, k = 2 attributes, and the same payoff scheme used in
the experiment. The example explained and illustrated the updating of the
relative ranks of each attribute for each applicant. Once the subjects under-
stood the instructions, they were then seated at individual computers. Then
they performed two practice problems to verify their understanding of the
task. The experimental problems were presented once the subjects success-
fully completed these two practice problems.

Each subject completed 100 trials (replications) of the MASP with n = 30
applicants and k = 2 attributes. The orderings of the absolute ranks for each
attribute were generated randomly and independently for each subject and
each trial. The payoff structure (described below) was fixed over all trials
and each trial was structured in the same way: The relative ranks of appli-
cant j on two attributes were displayed, and then the subject was allowed
to either select the applicant, thereby terminating the search, or proceed and
observe a new applicant. If she decided to continue the search on applicant j
(j = 1, . . . , n − 1), then the relative ranks of all j applicants that had been
observed and rejected were updated and displayed. If she opted not to stop
the search, then she was forced to accept the nth applicant. When the subject
stopped the search, thereby terminating the trial, all the n absolute ranks
for both attributes and their corresponding relative ranks were displayed on
the computer screen. In this way, subjects who stopped the search on differ-
ent periods were provided with full information about the actual sequences of
absolute ranks of all the n applicants.
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4.1.3 Payoff Structure

The DMs earned positive payoffs for selecting applicants with attributes whose
absolute rank did not exceed 5; for absolute ranks 6 through 30, they earned
nothing. Selecting an applicant with an absolute rank of 1 contributed $25 to
a DM’s payoff; selecting ones with 2, 3, 4, or 5 contributed $12, $8, $4, $2,
respectively. Hence, the subjects could earn as much as $50 on a given trial
and as little as $0. Subjects were paid for a single randomly selected trial,
which they determined for themselves by drawing a number from a hat. The
payoff schemes used in the current experiment and also in Experiment 2 are
presented in Table 2. The optimal policy for the problems studied in both
experiments is presented in the next section.

Table 2
Payoff schemes used in Experiments 1 and 2. Payoffs are in US dollars.

Experiment 1

a 1 2 3 4 5 6-30

π1(a) 25 12 8 4 2 0

π2(a) 25 12 8 4 2 0

Experiment 2

a 1 2 3 4 5 6-30

π1(a) 25 12 8 4 2 0

π2(a) 15 8 4 2 1 0

4.2 Results

4.2.1 Earnings

Under the optimal policy, a DM expects to earn V 1∗ = 18.91. (All payoffs are
in US dollars. We omit the dollar signs.) Taking the mean earnings for each
subject over all 100 trials (M = 13.13, SD = 2.97) and comparing these to
the expected payoff under optimal play, we find that the actual payoffs are
significantly smaller, t(29) = 10.57, p < .001.

4.2.2 Stopping Position

We computed the mean stopping positions over the 100 trials of the MASP and
compared these to the expected stopping position under the optimal policy,

12



E(m) = 20.09, which results from the application of Eq. 7. The mean observed
stopping position (M = 15.89, SD = 4.29) was significantly smaller than that
expected under the optimal policy, t(29) = 5.48, p < .001. On average and
across all 100 trials, the subjects stopped the search about four observations
shorter than expected under the optimal policy.

The linear correlation between the subjects’ mean stopping position and their
mean earnings was positive and significant (r = .72, p < .001). A scatterplot of
the relationship is presented in the left panel of Figure 1. Subjects who tended
to search longer also tended to earn higher payoffs; however, in all cases, the
mean earnings are below those expected under the optimal policy. Hence,
a reasonable inference is that even those subjects who tended to search, on
average, about the same amount as expected used policies that differed from
the optimal policy. Below, we discuss in more detail the nature of the subjects’
policies.

4.2.3 Evidence of Learning

We first searched for evidence of learning by regressing the mean earnings for
each trial onto the trial numbers. The slope of the regression line was positive
and significant, b = .0145, p = .049, indicating that earnings increased with
experience. (A Durbin-Watson test revealed that the independence assumption
necessary for the inference was not violated, d = 2.07, p > .05) However, the
increase in earnings is quite mild across trials, and still well below the expected
earnings in the final trials (Figure 2). The subjects also tended to search longer
with experience. Regressing the mean stopping position on each trial onto the
trial numbers, we find that the slope of the regression line is significantly
positive, b = .025, p < .001; d = 2.07, p > .05. The mean stopping positions
over trials are displayed in Figure 3. The subjects seem to have learned that
searching longer improves payoffs.

4.2.4 Estimated Policies

By Proposition 2, the optimal policy can be represented by a set of cutoffs
for each feasible pair of relative ranks. The cutoffs dictate at which applicant
positions it becomes optimal to select applicants with different sets of relative
ranks. Specifically, under this representation, the optimal DM stops on a pair
of relative ranks (rj

1 = x, rj
2 = y) if and only if the cutoff for (x, y) has been

reached, i.e., if c∗x,y ≥ j. The c∗x,y are ordered such that c∗x,y ≤ c∗x,y+1 and
c∗x,y ≤ c∗x+1,y. That is, under the optimal policy, represented by the set of all
optimal cutoffs c∗, the threshold for a pair of relative ranks cannot be below
the threshold for another pair of ranks that is strictly better. In this section,
we describe a procedure for estimating sets the empirical cutoffs ĉ for each
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Fig. 1. Mean earnings as a function of mean stopping position for Experiments 1
and 2. The vertical (solid) line in each plot corresponds to the expected stopping
position under the optimal policy. The horizontal (dotted) line in each represents
the expected earnings under the optimal policy.
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Fig. 2. Mean earnings (over subjects) as a function of trial for Experiments 1 and
2. The solid lines are based on OLS best fits. The horizontal (dotted) line in each
represents the expected earnings under the optimal policy.
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Fig. 3. Mean stopping position (over subjects) as a function of trial for Experiments
1 and 2. The solid lines are based on OLS best fits. The horizontal (dotted) line in
each represents the expected stopping position under the optimal policy.

experimental subject from the experimental choice data.

We treat the estimation as a minimization problem. For each subject and each
trial, we have a set of continue and stop decisions. On trial t, the decision on
applicant j with relative ranks (x, y) to stop is denoted by δ(t, j, x, y) = 1
and to continue by δ(t, j, x, y) = 0. For a set of cutoffs ĉ, we denote the
corresponding predicted decisions by δ̂(t, j, x, y). Precisely, δ̂(t, j, x, y) = 1 for
some policy ĉ if and only if ĉx,y ≥ j; otherwise, δ̂(t, j, x, y) = 0. For each
subject, our objective is to find a set of cutoffs ĉ that minimizes

∑100
t=1

∑mt
j=1

∣∣∣δ(t, j, x, y)− δ̂(t, j, x, y)
∣∣∣

∑100
t=1 mt

, (8)

subject to ĉx,y ≤ ĉx,y+1 and ĉx,y ≤ ĉx+1,y, and where mt denotes the applicant
position on which the subject stopped on trial t. In words, Eq. 8 simply returns
the proportion of decisions made by a subject that are incompatible with the
cutoffs ĉ. For shorthand, we refer to this objective function as the violation
function.

To minimize violations (Eq. 8), we used the threshold accepting (TA) algo-
rithm developed by Dueck and Scheuer (1990), which is an extension of the
better-known simulated annealing algorithm. The set of feasible cutoff sets is
enormous, making enumeration (brute-force) infeasible. Further, our problem
is not convex and more traditional optimization procedures are not applicable.
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TA allows us to efficiently search the space and also to avoid local minima,
which tend to plague many combinatorial optimization problems. We refer the
reader to Dueck and Scheuer for a complete description of the algorithm.

Since all relative ranks greater than 5 entailed 0 payoffs, we converted all of
these to relative rank of 6. This allows us to estimate 36 rather than 900 cutoffs
without any loss. The median estimated t̂x,y (x, y = 1, . . . , 6) are displayed in
the center panel of Table 3. The mean value of the violation function for the
estimated cutoffs was rather small M = .034 (SD = .017); on average, the
estimated cutoffs predicted more than 96% of subjects’ decisions.

The difference panel (bottom panel) in Table 3 is quite telling. First, note that
most of the differences between the observed and optimal cutoffs are negative,
indicating that the subjects’ cutoffs were generally shifted toward stopping
too early. The differences are most negative for intermediately small pairs of
relative ranks (e.g., (2, 2), (2, 3), (3, 4), etc.), indicating a strong bias to stop
early on these pairs. The estimated cutoff for applicants whose relative ranks
are both 1 is neither too early nor too late. In contrast, the subjects’ tended to
pass up applicants with one good attribute (r = 1) and one poor one (r ≥ 6),
when stopping had a higher expected payoff. Therefore, the observed early
stopping seems to be largely driven by the subjects’ strong tendency to stop
early on “middle quality” pairs of relative ranks. This observation is confirmed
by an analysis of the actual probabilities of stopping on applicants with each
pair of relative ranks. The subjects tended to stop considerably more often
on applicants with intermediately small relative ranks than is dictated by the
optimal policy. Further, they stopped less often than they should have (by the
optimal policy) for pairs of (1, r ≥ 6).

4.3 Conclusion

Consistent with previous experimental studies of secretary problems (e.g.,
Bearden et al., 2004; Seale and Rapoport, 1997, 2000; Zwick et al., 2003),
we find that DMs in the MASP tend to terminate their search too early rel-
ative to the optimal policy. Our results allow us to say more than this. We
find that the tendency to terminate the search too early is mostly driven by
the DMs stopping prematurely on intermediately small relative ranks. Taken
together with the finding that the DMs tend to search beyond applicants with
one good (r = 1) attribute and one poor (r ≥ 6) one when they ought not,
it seems that they are giving considerable (disproportionate) weight to select-
ing an applicant who is “acceptable” on both attributes, where acceptable is
defined as contributing a nonzero amount to the selection payoff. To inves-
tigate this finding further, we conducted a second experiment with a payoff
scheme that gives considerably more weight to one attribute relative to the

16



Table 3
Optimal and empirical (estimated) cutoffs for Experiment 1. The estimated cutoffs
are based on the median cutoff taken over subjects. The bottommost panel shows
the difference in the median empirical and optimal cutoff for each pair of relative
ranks. Note that a negative difference obtains when the empirical cutoff is placed
before the optimal cutoff (too early); the difference is positive when the empirical
cutoff is located after the optimal cutoff (too late).

Optimal Cutoffs

r2

1 2 3 4 5 6

1 7 12 14 15 16 16

2 12 19 22 24 25 26

r1 3 14 22 25 27 27 28

4 15 24 27 28 29 29

5 16 25 27 29 30 30

6 16 26 28 29 30 30

Empirical Cutoffs

r2

1 2 3 4 5 6

1 7 9 10 12 13 18

2 9 11 12 16 18 25

r1 3 10 12 16 20 22 27

4 12 16 20 22 25 29

5 13 18 22 25 29 30

6 18 25 27 29 30 30

Empirical-Optimal Cutoffs

r2

1 2 3 4 5 6

1 0 -4 -5 -3 -3 2

2 -4 -9 -10 -9 -7 -1

r1 3 -5 -10 -9 -8 -5 -2

4 -3 -9 -8 -6 -4 0

5 -3 -7 -5 -4 -1 0

6 2 -1 -2 0 0 0
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other. Under the unequal weighting payoff scheme, relying on a heuristic pol-
icy of the sort observed in Experiment 1 is less efficient. In addition, since,
in many real-world search scenarios, DMs often assign more weight to certain
attributes over others, our second experiment allows us to test the generality
of the results of Experiment 1 in a broader class of sequential search problems.

5 Experiment 2: Unequally Weighted Attributes

5.1 Method

5.1.1 Subjects

Thirty subjects were recruited in the same manner as those in Experiment
1. The mean payoff for the session was around $20 (minimum $5, maximum
$37).

5.1.2 Procedure

The procedure was identical to that of Experiment 1 in all but one way:
The payoff scheme used in the example in the instructions was changed to
correspond to the payoff scheme used in the current experiment.

5.1.3 Payoff Scheme

The payoffs used for the first attribute were the same as in Experiment 1. For
attribute 2, however, the subjects earned $15 for selecting an applicant whose
absolute rank on that attribute was 1; $8 for selecting an applicant whose
second attribute had an absolute rank of 2; and $4, $2, and $1 for selecting
applicants whose absolute ranks on attribute 2 were 3, 4, and 5, respectively.
For absolute ranks greater than 5 on attribute 2, they earned $0. Hence, in
this experiment the subjects could earn between $0 and $37 on a single trial.
Again, each subject was paid for a single randomly chosen trial by drawing a
random number from a hat. The payoff scheme is summarized in Table 2.
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5.2 Results

5.2.1 Earnings

The optimal DM can expect to earn V 1∗ = 16.23 in Experiment 2. Computing
the mean earnings for each subject and taking the mean of these individual
results (M = 13.53, SD = 2.53), our results show that the mean observed
payoff is significantly smaller than the expected payoff, t(29) = 5.83, p < .001.

5.2.2 Stopping Position

The expected stopping position under the optimal policy is E(m) = 19.45.
Similarly to Experiment 1, the mean stopping position (M = 15.90, SD =
3.38) was significantly smaller than that expected under optimal search, t(29) =
5.75, p < .001. As observed in Experiment 1, the correlation between observed
mean stopping position and mean payoff was positive and significant (r = .71,
p < .001). As the subjects tended to search less, they, in turn, earned less (see
Figure 1).

5.2.3 Evidence of Learning

Earnings tended to increase with experience, as evidenced by the significant
positive slope of the earnings regressed onto trial number, b = .0262, p < .001.
(As before, we used a Durbin-Watson test to verify that the independence
assumption of the regression was not violated; it was not, d = 2.00, p > .05.)
The trend is greater than observed in Experiment 1. In fact, the earnings in
late trials are quite close to the optimal expected earnings (see Figure 2). The
increase in earnings over trials seems to have been driven (at least in part)
by the subjects learning to search deeper into the options before making a
selection. The slope of the regression line of mean stopping position onto trial
is positive and significant, b = .017, p < .001; d = 2.44, p > .05. The mean
stopping position over trials is exhibited in Figure 3.

5.2.4 Estimated Policies

We used the procedure described in Experiment 1 to estimate the decision
policy of each subject in Experiment 2. The median cutoffs are displayed in
Table 4. First, note that the subjects’ cutoffs reveal that their policies are
sensitive to the attribute weights. In no case is the cutoff for a given pair of
relative ranks (r1, r2) = (x, y) for x ≤ y greater than the cutoff for (y, x), and
in most cases the cutoffs for (x, y) are smaller. This provides strong evidence
that the subjects were giving more weight to the more important (higher
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payoff) attribute, as they ought to. The violation function for the estimated
cutoffs was again quite small M = .042 (SD = .014), but slightly larger than
in Experiment 1.

The general pattern of departures of the estimated cutoffs from the optimal
cutoffs is quite similar to the one in Experiment 1. Much of the early stopping
in Experiment 2 is driven by the subjects’ tendency to stop on intermediately
small pairs of relative ranks. Once again, we find that the subjects cutoffs
for applicants with one good attribute (r = 1) and one poor one (r ≥ 6) are
shifted considerably toward later applicants. Taken together, the estimated
cutoffs again suggest that the subjects are strongly biased to select applicants
whose relative ranks may both entail positive payoffs; conversely, the subjects
tend to be biased against selecting applicants for whom at least one attribute
will certainly result in a zero payoff. A comparison of the cutoffs for relative
ranks (1, 6) and (6, 1) suggests that the subjects assigned disproportionate
weight to the less important attribute. They should accept applicants with
relative ranks (1, 6) starting with the 13th applicant but do not tend to do so
until the 21st applicant—eight applicant positions too late. The bias is much
smaller for (6, 1): the subjects should take these applicants starting on the
21st applicant and begin to do so just four applicants later.

5.3 Conclusion

The results of Experiments 1 and 2 are quite similar. In both experiments,
the subjects tend not to search deeply enough into the set of applicants: They
stop too soon. The bias to stop searching too early, however, does not obtain
for all combinations of relative ranks. It occurs for applicants for whom both
attributes are relatively good (and therefore may have positive payoffs), but
the subjects are biased against selecting applicants with one relatively very
good attribute (e.g., r = 1) and one poor attribute (r ≥ 6), even when doing
so is advantageous. This pattern of behavior is consistent with the use of a
modified satisficing rule (Simon, 1955). The subjects seem to be searching
for applicants who are acceptable on both attributes (i.e., both attributes
can lead to positive payoffs); however, they do not seem to have a strict set of
aspiration levels: They do tend to stop sooner on applicants with smaller pairs
of relative ranks. When the relative ranks are both below 6 and can therefore
both entail positive payoffs, the subjects do make trade-offs and behave in
a way consistent with a form of optimization (though the behavior is still
suboptimal—with respect to the optimal policy). As soon as one relative rank
entails zero payoffs for that attribute, the decision rule seems to become non-
compensatory—subjects do not tend to make the same sorts of trade-offs in
these cases. The estimated cutoff policies account for the data remarkably
well. In Experiment 1, the estimated policies captured around 96% of the
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Table 4
Optimal and empirical (estimated) cutoffs for Experiment 2. The estimated cutoffs
are based on the median cutoff taken over subjects. The bottommost panel shows
the difference in the median empirical and optimal cutoff for each pair of relative
ranks. Note that a negative difference obtains when the empirical cutoff is placed
before the optimal cutoff (too early); the difference is positive when the empirical
cutoff is located after the optimal cutoff (too late). Recall that r1 is the more heavily
weighted attribute.

Optimal Cutoffs

r2

1 2 3 4 5 6

1 7 11 12 13 13 13

2 14 19 22 23 24 24

r1 3 17 23 25 26 27 27

4 19 25 27 28 29 29

5 20 26 28 29 30 30

6 21 27 29 30 30 30

Empirical Cutoffs

r2

1 2 3 4 5 6

1 7 7 12 12 21 21

2 10 13 17 20 25 25

r1 3 14 20 22 25 25 27

4 17 24 25 25 28 28

5 22 26 28 29 30 30

6 25 30 30 30 30 30

Empirical-Optimal Cutoffs

r2

1 2 3 4 5 6

1 0 -4 0 -1 8 8

2 -4 -6 -5 -3 1 1

r1 3 -3 -3 -3 -1 -2 0

4 -2 -1 -2 -3 -1 -1

5 2 0 0 0 0 0

6 4 3 1 0 0 0
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subjects’ decisions; the Experiment 2, the estimated policies captured around
95% of the decisions. Without resorting to more complicated decision rules
(e.g., ones with additional free parameters), we think it doubtful that we can
better account for these results.

6 Summary

We began this paper by presenting a realistic extension of the secretary prob-
lem in which the DM searches through applicants who vary on several indepen-
dent dimensions. In the standard (single-attribute) versions of the secretary
problem (the CSP and the GSP), the DM is not faced with the dilemma—
inherent to many decisions—of making trade-offs among the attributes of the
decision alternatives. When hiring an administrative assistant, for example,
it is not unlikely that applicants who are good in one domain (e.g., using a
database) are less qualified in another domain (e.g., proofreading complex doc-
uments). As a result, the person making hiring decisions must make trade-offs
among the attributes of the applicants. The multi-attribute secretary problem
(MASP) that we introduced here captures important properties of these kinds
of search problems.

Results from the two experiments suggest that DMs facing similar problems
may behave suboptimally and exhibit predictable biases. Most notably, con-
sistent with findings from the study of behavior in single-attribute secretary
search problems (e.g., Bearden et al., 2004; Seale and Rapoport, 1997, 2000;
Zwick et al., 2003), DMs tend to search insufficiently through applicants. Fur-
ther, in problems like the MASP they may make poor trade-off decisions within
applicants, preferring applicants who are mediocre on all attributes to those
who excel on one and are poor on others, even when the expected reward for
the former is greater. Perhaps in a number of real-world situations, however,
this bias would actually be beneficial. It would make little sense to hire a
database genius who introduces errors into legal documents that could result
in considerable cost to a company. In future work, we intend to generalize
the MASP to allow for noncompensatory payoff functions that capture these
situations. One possibility is to render the payoff a function of the product of
attribute values. We are currently developing methods for computing optimal
policies for this and other extensions of the MASP.

As formulated here, the attributes in the MASP are pairwise uncorrelated.
There are many situations in which this assumption is not likely to be vio-
lated. Intentionally, the examples used throughout this paper have involved
attributes that we suspect are at most weakly correlated, such as technical and
interpersonal skills. Of course, there are other scenarios in which one would
expect the attributes to be correlated. Proofreading and writing abilities, for
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example, are presumably related. This is another generalization of the MASP
that we intend to pursue.
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